1.
If () = , then find ′(1)
Solution:
g(n) = e1+n+n2+...+n20
[Write the function.]
g′(n) = ddn(e1+n+n2+...+n20)
[Find g′(n).]
= e1+n+n2+...+n20(1 + 2n + 3n2 +....+ 20n19)
[Use the Chain Rule.]
g′(n) = e1+n+n2 +...+n20(1 + 2n + 3n2 +...+ 20n19)
g′(1) = e1 + 1 + 1 + .....+ 1(1 + 2 + 3 + .....+ 20)
[Find g′(1).]
= 20(20+1)2e21 = 210e21
g′(1) = 210e21
Correct answer : (1)
2.
If () = , then find ′ ().
Solution:
f (q) = e(8sin2 3q+12cos2 3q)
[Write the function.]
f ′ (q) = ddq( e(8sin2 3q+12cos2 3q))
[Find f ′ (q)]
= e(8sin2 3q+12cos2 3q)ddq (8sin2 3q+12cos2 3q)
[Use the Chain Rule.]
= e(8sin2 3q+12cos2 3q) ((8) (2) (sin 3q) (cos 3q) (3)+12 (2) (cos 3q) (- sin 3q) (3))
[Use the Chain Rule again.]
= e(8sin2 3q+12cos2 3q) (24sin 6q-36sin 6q)
[Use 2sin θ cos θ = sin 2θ]
= e(8sin2 3q+12cos2 3q) (- 12sin 6q)
= (- 12sin 6q) e(8sin2 3q+12cos2 3q)
f ′ (q) = - 12sin 6q e(8sin2 3q+12cos2 3q)
Correct answer : (4)
3.
If () = , then find ′ ().
Solution:
f (r) = 4e8r+8er+12
[Write the function.]
f ′ (r) = ddr (4e8r+8er+12)
[Find f ′ (r)]
= 124e8r+8er+12ddr (4e8r+8er+12)
[Use the Chain Rule.]
= (4) (8)e8r+8er24e8r+8er+12
f ′ (r) = 32e8r+8er24e8r+8er+12
Correct answer : (4)
4.
If () = tan (, then find ′ ().
Solution:
h(m) = tan (e15m)+sec (e15m)
[Write the function.]
h ′ (m) = ddm (tan (e15m)+sec (e15m))
[Find h′ (m)]
= sec2 (e15m) (e15m) (15)+sec (e15m) tan (e15m)(e15m) (15)
[Use the Sum Rule, the Chain Rule.]
= 15e15m sec (e15m) (sec (e15m)+tan (e15m))
[Factor out 15e15m]
h ′ (m) = 15e15m sec (e15m) (sec (e15m)+tan (e15m))
Correct answer : (2)
5.
If () = , then find ′(1).
Solution:
f (s) = es+es22+es33+....+es9090
[Write the function.]
f ′(s) = dds(es+es22+es33+....+es9090)
[Find f ′(s).]
= es+ses2+s2es3+....+s89es90
[Use the Sum Rule and the Chain Rule.]
f ′(s) = es+ses2+s2es3+....+s89es90
f ′(1) = e + e + e + ...... + e = 90e
[Find f ′(1).]
Correct answer : (1)
6.
Find ′ (), if () = sin .
Solution:
f (m) = sin 8e3m+41
[Write the function.]
f ′ (m) = ddm (sin8e3m+41)
[Find f ′ (m)]
= cos 8e3m+41 ddm (8e3m+41)
[Use the Chain Rule.]
= (cos 8e3m+41) (128e3m+41) (8e3m) (3)
[Use the Chain Rule again.]
= 12 (e3m8e3m+41) (cos8e3m+41)
f ′ (m) = 12 (e3m cos8e3m+418e3m+41)
Correct answer : (3)
7.
If () = , then find ′ ().
Solution:
f (x) = e(-6x+tan 6x)
[Write the function.]
f ′ (x) = ddx (e(-6x+tan 6x))
[Find f ′ (x)]
= e(-6x+tan 6x)ddx (-6x+tan 6x)
[Use the Chain Rule.]
= e(-6x+tan 6x) (-6+6sec2 6x)
[Use the Chain Rule again.]
= (6 tan2 6x) e(-6x+tan 6x)
f ′ (x) = 6 tan2 6x e(-6x+tan 6x)
Correct answer : (5)
8.
If () = 9, then find ′ ().
Solution:
f (k) = e9k
[Write the function.]
f ′ (k) = ddk (e9k)
[Find f ′ (k)]
= e9k ddk (9k)
[Use the Chain Rule.]
= e9k 9k ln 9
f ′ (k)= 9k e9k ln 9
Correct answer : (3)
9.
If () = 31 + 2 + 4 + ....+ 24, then find ′(1).
Solution:
f (q) = 31 + q2 + q4 + ....+ q24
[Write the function.]
f ′(q) = ddq(31 + q2 + q4 + ....+ q24)
[Find f ′(q).]
= (31 + q2 + q4 + ....+ q24)(ln 3)(2q + 4q3 + ....+ 24q23)
[Use the Chain Rule.]
f ′(q) = 31 + q2 + q4 + ....+ q24(2q + 4q3 + ....+ 24q23)ln 3
f ′(1) = 313(2 + 4 + ....+ 24)ln 3
[Find f ′(1).]
= (313)(2)(1 + 2 + 3 + ....+ 12)ln 3
[Factor out 2.]
= (313)(2)12(12 + 1)2ln 3
[Sum of the first n positive integers = n(n+1)2.]
= (156)313ln 3
f ′(1) = (156)313 ln 3
Correct answer : (3)
10.
If () = , then find ′ ().
Solution:
h(k) = 16k9+e11k
[Write the function.]
h ′ (k) = ddk (16k9+e11k)
[Find h ′ (k)]
= (9+e11k)ddk (16k)-16kddk (9+e11k)(9+e11k)2
[Use the Chain Rule.]
= (9+e11k) (16)-16k(e11k) (11)(9+e11k)2
= 144+16e11k(1-11k)(9+e11k)2
h ′ (k) = 144+16e11k(1-11k)(9+e11k)2
Correct answer : (4)