﻿ Limit Worksheets | Problems & Solutions
To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)

Limit Worksheets

Limit Worksheets
• Page 1
1.
Evaluate $\underset{x\to 7}{\mathrm{lim}}$ .
 a. 10 b. 8 c. 9 d. 7

Solution:

limx7 8x -56x - 7

= limx78(x - 7)x - 7

= limx7 8

= 8.

Correct answer : (2)
2.
Find the value of $\underset{x\to 7}{\mathrm{lim}}$ .
 a. - $\frac{1}{5}$ b. - $\frac{1}{7}$ c. does not exist

Solution:

limx7 x - 7x2 - 14x + 49

= limx7 x - 7(x - 7)2

= limx7 1x - 7

= ± ∞

So , the limit does not exist.

Correct answer : (3)
3.
What is the value of $\underset{x\to 5}{\mathrm{lim}}$ ?
 a. - 5 b. $\frac{5}{4}$ c. $\frac{5}{6}$

Solution:

limx5 5(x - 5)x2 - 6x + 5

= limx5 5(x - 5)(x - 1)(x - 5)
[Factor x2 - 6 x + 5.]

= limx5 5x - 1

= 55 - 1

= 5 / 4

Correct answer : (3)
4.
Find the value of $\underset{x\to 0}{\mathrm{lim}}$.
 a. 2 b. 3 c. -1

Solution:

limx02x - 3x2x

= limx0x(2 - 3x)x
[Factor 2x - 3x2.]

= limx0 (2 - 3x)

= 2 - 3(0)

= 2.

Correct answer : (1)
5.
Evaluate $\underset{x\to 3}{\mathrm{lim}}$ .
 a. 6 b. 3 c. ∞

Solution:

limx3 x2 - 9x - 3

= limx3 (x - 3)(x + 3)x - 3
[Factor x2 - 9.]

= limx3 (x + 3)

= (3 + 3) = 6.

Correct answer : (1)
6.
Evaluate $\underset{x\to 1}{\mathrm{lim}}$.
 a. $\frac{1}{\sqrt{82}}$ b. does not exist c. ∞

Solution:

limx1x2 + 81 -82x - 1

= limx1 (x2 + 81-82)(x2 + 81 +82)(x - 1)(x2 + 81 +82)
[Rationalize the numerator.]

= limx1 x2 - 1(x - 1)(x2 + 81 +82)

= limx1 (x +1)(x - 1)(x - 1)(x2 + 81 +82)
[Factor (x2 - 1).]

= limx1 x + 1(x2 + 81 +82)
[Cancel the common factor.]

= 2282 = 182.

Correct answer : (1)
7.
Find the equation of the tangent to the curve $f$ ($x$) = $x$2 such that $f$ (8) = 64.
 a. $y$ - 16$x$ - 64 = 0 b. $y$ = 16$x$ + 64 c. 16$x$ - $y$ - 64 = 0 d. None of the above

Solution:

f (x) = x2, f (8) = 64.

limh0f (8 + h) - f (8)h = limh0(8 + h )2 - 64h = limh0 64 + 16h +h2 - 64h

= limh016 + h =16.

So, the slope of the tangent line to the curve at the point (8, 64) = 16.

The equation of the tangent line to the curve at the point (8, 64) is y - 64 = 16 (x - 8) or y = 16x - 64.
[Use slope point form.]

Correct answer : (3)
8.
Find the equation of the tangent to the curve $f$ ($x$) = 1 - 2$x$ + $x$2 ; $f$ (-4) = 25.
 a. $y$ - 2$x$ = 0 b. $y$ + $x$ = 0 c. $y$ + 10 $x$ = -15 d. $y$ - 10$x$ = 0

Solution:

f (x) = 1 - 2x + x2, f (-4) = 25

f (-4 + h) - f (-4)h = 1 - 2(-4 + h) +(-4 + h)2 - 25h = h - 10

limh0 f (-4 + h) - f (-4)h = limh0 ( h - 10) = - 10

So, the slope of the tangent to the curve at the point (-4, 25) = - 10

The equation of the tangent line to the curve at the point (-4, 25) is y - 25 = - 10(x-(-4)) y + 10x = -15.
[Use slope point form.]

Correct answer : (3)
9.
Find the equation of the tangent to the curve $f$ ($x$) = $\sqrt{x}$, $f$ (8) = $\sqrt{8}$.
 a. $y$ = $x$ + $\frac{\sqrt{8}}{2}$ b. $y$ = $\frac{x}{2\sqrt{8}}$ + $\frac{\sqrt{8}}{2}$ c. $y$ = $x$ - 1 d. $y$ = $x$ - $\frac{1}{2}$

Solution:

f (x) = x; f (8) = 8

f (8 + h) - f (8)h = 8 + h -8 h

= 8 + h -8h . 8 + h +88 + h +8

= hh(8 + h +8)

= 18 + h +8

limh0 f (1 + h) - f (1)h = limh0 18 + h +8 = 128

So , the slope of the tangent line to the curve at the point (8,8) = 128 .

The equation of the tangent line to the curve at the point (8,8) is y - 8 = 128(x - 8) or y = x28 + 82.
[Use slope point form.]

Correct answer : (2)
10.
Which of the following is the tangent to the curve $f$ ($x$) = $x$5 + 4 such that $f$ (0) = 4?
 a. $y$ + $x$ = 1 b. $y$ = 0 c. $y$ = $x$ d. $y$ = 4

Solution:

f (x) = x5 + 4; f (0) = 4

f (0 + h) - f (0)h = (h5 + 4) - (0 + 4)h = h4

limh0 f (0 + h) - f (0)h = limh0 h4 = 0

So, The slope of the tangent line to the curve at the poiunt (0,4) = 0.

The equation of the tangent line to the curve at the point (0,4) is y - 4 = 0(x - 0) y = 4
[Use slope point form.]

Correct answer : (4)

 More Limit Worksheets Limits of Polynomial and Rational Functions Worksheet Investigating Limits Using Tables and Graphs Worksheet Limits and Asymptotes Worksheet Limits and Continuity Worksheet Limits and Motion: the Area Problem Worksheet Limits at Infinity Worksheet Limits of Exponential and Logarithmic Functions Worksheet Limits of Functions Involving Modulus and Greatest Integer Worksheet Limits of Functions Worksheet Limits of Piece Wise Functions Worksheet Limits of Trigonometric and Radical Functions Worksheet Power and Sum/difference Rules of Limits Worksheet Product and Quotient Rules of Limits Worksheet Central Limit Theorem Worksheet Continuity and One Sided Limits Worksheet Evaluate Limits Using Rules Worksheet Evaluating Limits Analytically Worksheet Evaluating Limits Using Definition (epsilon - Delta) Worksheet Infinite Limits Worksheet L'hopital's Rule Worksheet The Squeeze Theorem Worksheet
*AP and SAT are registered trademarks of the College Board.