﻿ Special Segments in Triangles Worksheet | Problems & Solutions

# Special Segments in Triangles Worksheet

Special Segments in Triangles Worksheet
• Page 1
1.
$\stackrel{‾}{\mathrm{AD}}$ is the perpendicular bisector of $\stackrel{‾}{\mathrm{BC}}$. If AD = 24 cm and BD = 7 cm, then find AC.

 a. 17 cm b. 4 cm c. 20 cm d. 25 cm

2.
Select the correct statement(s) with respect to a triangle.
I. Sides containing the smallest angle will be larger than the third side.
II. Sides containing the largest angle will be longer than the third side.
III. Sum of the lengths of the smaller sides will be less than the length of the larger side.
 a. I, II, and III b. III only c. II only d. I only

3.
Which of the following cannot be the measure of $\stackrel{‾}{\mathrm{BC}}$?

 a. 24 cm b. 6 cm c. 12 cm d. 4 cm

4.
Which list order the angles from the greatest measure to the least measure in ΔABC?

 a. $\angle$C, $\angle$B, $\angle$A b. $\angle$B, $\angle$A, $\angle$C c. $\angle$C, $\angle$A, $\angle$B d. $\angle$A, $\angle$B, $\angle$C

5.
If $\angle$$A$ is the largest angle in Δ$A$$B$$C$, then which of the following can be the length of $B$$C$?

 a. 9 cm b. 4 cm c. 6 cm d. 2 cm

6.
What is the ascending order for the lengths of the sides of ΔABC?

 a. $\stackrel{‾}{\mathrm{AB}}$ < $\stackrel{‾}{\mathrm{BC}}$ < $\stackrel{‾}{\mathrm{AC}}$ b. $\stackrel{‾}{\mathrm{AC}}$ < $\stackrel{‾}{\mathrm{AB}}$ < $\stackrel{‾}{\mathrm{BC}}$ c. $\stackrel{‾}{\mathrm{AC}}$ < $\stackrel{‾}{\mathrm{BC}}$ < $\stackrel{‾}{\mathrm{AB}}$ d. $\stackrel{‾}{\mathrm{BC}}$ < $\stackrel{‾}{\mathrm{AB}}$ < $\stackrel{‾}{\mathrm{AC}}$

7.
Which of the following does not represent the lengths of the sides of a triangle?
 a. 8 cm, 7 cm, 20 cm b. 2 cm, 4 cm, 4 cm c. 2 cm, 2 cm, 1 cm d. 5 cm, 9 cm, 10 cm

$A$$B$ > $B$$C$ > $C$$A$. What could be the measures of $\angle$$A$, $\angle$B and $\angle$$C$ respectively?