To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)

U-substitution and the General Power Rule Worksheet

U-substitution and the General Power Rule Worksheet
  • Page 1
 1.  
Evaluate (x + 9)x - 10dx.
a.
(2x5 + 26 3) + C
b.
(x5 + 26 3) (x-10)323 + C
c.
(2x5 + 26 3) (x-10)323 + C
d.
(2x5 + 26 3) (x-10)523 + C


Solution:

(x + 9)x - 10dx = (u2 + 19)u (2u)du
[Let u² = x - 10, 2u du = dx.]

= (2u4 + 38u2) du

= 2(u55) + 38(u33) + C

= 2((x-10)525) + 38((x-10)323) + C
[Substitute u2 = x - 10.]

= (x-10)323[25(x-10) + 383]

= [2x5 + 26 / 3] (x-10)323 + C


Correct answer : (3)
 2.  
Evaluate x3(7+x2)3dx.
a.
(7 4) 1(7+x2)2 + C
b.
-12(7+x2) + (7 4) 1(7+x2)2 + C
c.
-12(7+x2) + C
d.
does not exist


Solution:

x3(7+x2)3dx = x2(7+x2)3x dx
[Let u2 = 7 + x2, u du = x dx.]

= (u-3 - 7u-5)du

= (- 1 / 2)u-2 + 7 / 4u- 4 + C

= -12(7+x2) + (7 / 4) 1(7+x2)2 + C
[Substitute u2 = 7 + x2.]


Correct answer : (2)
 3.  
Evaluate 16xe14x2 dx.
a.
8 7 (e14x2) + C
b.
4 7 (e14x2) + C
c.
8 x2e14x2 + C
d.
(e14x2) + C


Solution:

16xe14x2 dx = 16 / 28 xe14x2 1x du
[Let u = 14x2 du = 28xdx.]

= 4 / 7 eu du
[Substitute 14x2 = u.]

= 4 / 7 eu + C

= 4 / 7 (e14x2) + C
[Substitute u = 14x2.]


Correct answer : (2)
 4.  
Evaluate - 46x7 -x2 dx.
a.
46 ln |7 - x2| + C
b.
23 ln |7 - x2| + C
c.
1 2 ln |7 - x2| + C
d.
ln |7 - x2| + C


Solution:

- 46x7 -x2 dx

Let u = 7 - x2 du = - 2x dx

= 23 1u du

= 23 ln |u| + c

= 23 ln |7 - x2| + C
[Substitute u = 7 - x2.]


Correct answer : (2)
 5.  
31x2(x3+ 8)5dx =
a.
- 31x312(x3 + 8)4 + C
b.
- 155(x3+8)6 + C
c.
- 3112(x3 + 8)4 + C
d.
- 314(x3 + 8)4 + C


Solution:

Let x3 + 8 = u 3x2dx = du.

So, 31x2(x3 + 8)5 dx = 31x2(x3 + 8)5 13x2 du
[As du = 3x2 dx dx = 13x2 du.]

= 31 / 3 1u5 du
[u = x3 + 8.]

= 31 / 3 u- 5du

= 31 / 3 (u- 4- 4) + C

= - 31 / 12(x3 + 8)- 4 + C
[Substitute u = x3 + 8.]

= - 3112(x3 + 8)4 + C


Correct answer : (3)
 6.  
Evaluate (x2 - 32x)10(2x - 32) dx.
a.
(x2 - 32x)1111 + C
b.
(x2 - 32x)11 + C
c.
10(x2 -  32x)9 + C
d.
1 22(x2 - 32x)11(2x-32)2 + C


Solution:

Let u = x2 - 32x du = (2x - 32) dx

So, (x2 - 32x)10(2x - 32)dx = (x2 - 32x)10(2x - 32) 1(2x - 32) du
[As du = (2x - 32) dx dx = du2x - 32 .]

= u10 du
[u = x2 - 32x.]

= u1111 + C

= (x2 - 32x)1111 + C
[Substitute u = x2 - 32x.]


Correct answer : (1)
 7.  
Evaluate 19sin x - cos x - 1 dx.
a.
19 ln |tan x - 1| + C
b.
ln |tan (x 2) + 1| + C
c.
19 ln |tan (x 2) - 1| + C
d.
ln |tan x - 1| + C


Solution:

Let u = tan(x2) x = 2 tan-1 (u) and dx = 21+u2du

sin x = 2u1+u2, cos x = 1-u21+u2

So, 19sin x - cos x - 1 dx = 192u1+u2-1-u21+u2 - 121+u2 du
[Substitute u = tanx2 and dx = 21+u2 du.]

= 19u - 1 du

= 19ln |u -1| + C

= 19ln |tan(x2 ) - 1| + C
[Substitute u = tan(x2 ).]


Correct answer : (3)
 8.  
20sinh x + cosh x dx =
a.
1tanh(x2) + 1 + C
b.
40tanh(x2) + 1 + C
c.
40coth(x 2) + C
d.
- 40tanh(x2) + 1 + C


Solution:

Let u = tanh (x / 2) x = 2 tanh-1u and dx = 21 -u2 du

Sinh x = 2u1 -u2, cosh x = 1 +u21 -u2

So, 20sinh x + cosh x dx = 202u1 -u2 +1 +u21 -u221 -u2 du

= 40(1 + u)2 du

= - 40u + 1 + C

= - 40tanh(x2) + 1 + C
[Substitute u = tanh(x / 2).]


Correct answer : (4)
 9.  
Find 41(8x + 7)4x2 + 7x + 19dx.
a.
ln |4x2 + 7x + 19| + C
b.
41 log |4x2 + 7x + 19| + C
c.
41 ln |4x2 + 7x + 19| + C
d.
-41(4x2+7x+19)2 + C


Solution:

Let (4x2 + 7x + 19) = u (8x + 7) dx = du

So, 41(8x + 7)4x2 + 7x + 19 dx = 41 8x + 74x2 + 7x + 19 (18x + 7) du
[As (8x + 7) dx = du dx = du8x + 7.]

= 411u du
[Substitute 4x2 + 7x + 19 = u.]

= 41 ln |u| + c

= 41 ln |4x2 + 7x + 19| + C
[Substitute u = 4x2 + 7x + 19.]


Correct answer : (3)
 10.  
Evaluate 4x e7x2 + 27 dx.
a.
e7x2 + 27 + C
b.
2 7 e7x2 + 27 + C
c.
4 e7x2+27 + C
d.
1 14 e7x2 + 27 + C


Solution:

Let 7x2 + 27 = u 14x dx = du

So, 4x e7x2 + 27 dx = 4 / 14 (xe7x2 + 27)1x du
[As 14x dx = du dx = 114x du.]

= 2 / 7 eu du
[Substitute 7x2 + 27 = u]

= 2 / 7 eu + C

= 2 / 7 e7x2 + 27 + C
[Substitute u = 7x2 + 27.]


Correct answer : (2)

*AP and SAT are registered trademarks of the College Board.