﻿ Vector Worksheets | Problems & Solutions

# Vector Worksheets

Vector Worksheets
• Page 1
1.
Identify the vectors that are perpendicular.
 a. <1, 0, - 3> and <2, - 5, 0> b. <2, - 1, 3> and <4, 2, 5> c. <5, 6, 2> and <- 2, 3, - 4> d. <- 4, 2, 3> and <2, - 3, 5>

2.
Identify the vectors that are perpendicular.
 a. <1, 0, 1> and <1, - 1, - 1> b. <1, 2, - 3> and <4, 0, - 1> c. <0, - 2, 2> and <4, 0, - 1> d. <- 3, - 1, 2> and <- 7, 1, 0>

3.
Which of the following is true for the vectors?
<5, 2, 3> and <- 2, 5, 0>
 a. <5, 2, 3> and <- 2, 5, 0> are not perpendicular vectors. b. <5, 2, 3> and <- 2, 5, 0> are perpendicular vectors. c. <5, 2, 3> and <- 2, 5, 0> are equal vectors. d. cannot be determined

4.
Identify the vectors that are perpendicular.
 a. <7, 4> and <0, - 4> b. <6, 14> and <3, 5> c. <- 8, 2> and <4.5, 18> d. <5, 2> and <- 3, 7>

5.
If $\stackrel{\to }{\text{a}}$ = <8, - 4>, $\stackrel{\to }{\text{b}}$ = <- 3, - 6>, and $\stackrel{\to }{\text{c}}$ = <- 2, - 5> then find the vectors that are perpendicular.
 a. $\stackrel{\to }{\text{a}}$, $\stackrel{\to }{\text{b}}$ b. $\stackrel{\to }{\text{a}}$, $\stackrel{\to }{\text{c}}$ c. $\stackrel{\to }{\text{b}}$, $\stackrel{\to }{\text{c}}$ d. None of the above

6.
If $\stackrel{\to }{\text{s}}$ = <- 2, 7> then find 6$\stackrel{\to }{\text{s}}$.
 a. (8, - 13) b. (4, 13) c. (- 12, 42) d. (12, - 42)

7.
If $\stackrel{\to }{\text{x}}$ = <- 3, - 4> and $\stackrel{\to }{\text{y}}$ = <- 5, - 7>, then find $\stackrel{\to }{\text{x}}$ · $\stackrel{\to }{\text{y}}$.
 a. 43 b. 34 c. - 43 d. 23

8.
If $\stackrel{\to }{\text{s}}$ = <5, - 3> then find 4$\stackrel{\to }{\text{s}}$.
 a. (9, - 1) b. (- 20, 12) c. (20, - 12) d. (20, 12)

9.
If $\stackrel{\to }{\text{s}}$ = <- 4, 5> then find 3$\stackrel{\to }{\text{s}}$.
 a. (- 7, 8) b. (- 12, 15) c. (- 1, 8) d. (12, - 15)

If $\stackrel{\to }{\text{x}}$ = <2, 5>, $\stackrel{\to }{\text{y}}$ = <- 4, 2>, $\stackrel{\to }{\text{z}}$ = <-1, 2> then find 3$\stackrel{\to }{\text{x}}$ - 2$\stackrel{\to }{\text{y}}$ + $\stackrel{\to }{\text{z}}$ .